If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2-45x=0
a = 36; b = -45; c = 0;
Δ = b2-4ac
Δ = -452-4·36·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-45}{2*36}=\frac{0}{72} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+45}{2*36}=\frac{90}{72} =1+1/4 $
| 1/4(16+12x)=2 | | 14(16+12x)=28 | | w2-w-20=0 | | 15x^2+29+-14=0 | | n-n-1/2=1-n-2/3 | | 5/3=25/n | | 3/4x+2=4(2/3) | | n/6=6/4 | | 3/n=9/15 | | -(3b-2)+2(4b-2)=6-b | | 2x-8+2x=6x-2 | | 2(2x-3)-5=2x+7+4x | | 10/5=12/n | | 2x+3+4x=3(2x-4)+x | | (4+3i)(-5+3i)=0 | | 4(2x+5)=8x-9 | | (6x+3)-(2x-3)=0 | | 5+(7x(3+7x)-2)=112 | | m2+13m+12=0 | | -3y+12+6y=21 | | 24/(-3x)=0 | | 3x2−15=0 | | 1m-2=2m+5 | | 4x2+15x+12=0 | | 4x^2+3x^2-10=18 | | 4x+7=-13+8x | | 3x+x/4=18 | | 5x-29=11+3x | | 7(3x+6)-11=(x+2) | | ⅔x-1=x+7 | | ½x+6=-4 | | y3+4=−2 |